dpmm: Differentially Private Marginal Models, a Library for Synthetic Tabular Data Generation

Sofiane Mahiou¹, Amir Dizche¹, Reza Nazari¹, Xinmin Wu¹,

Ralph Abbey¹, Jorge Silva¹, Georgi Ganev^{1,2}

SAS¹, UCL²

Problem Description

Goal: Propose a lightweight library for DP synthetic data generation, containing three state-of-the-art marginal models (PrivBayes, MST, and AIM) with: 1) superior utility, 2) richer functionality, 3) end-to-end DP guarantees.

Code: <u>https://github.com/sassoftware/dpmm</u> (a Python library; pip installable; Apache-2.0 license)

Overview of *dpmm*

Marginal Models: *dpmm* contains three DP generative marginal models relying on the select-measure-generate paradigm and Private-PGM:

- PrivBayes: builds an optimal Bayesian network
- MST: builds a maximum spanning tree
- AIM: adaptively and iteratively optimizes marginals

DP Guarantees: *dpmm* adopts best practices from various scientific papers and DP libraries to provide end-to-end DP guarantees:

- Data Domain: either provided as input or extracted with DP
- Data Preprocessing: uses PrivTree, DP tree-based discretization method
- Floating-Point Precision: uses OpenDP for Gaussian mechanism sampling

Functionality: *dpmm* offers rich functionality across all models:

- Mixed Data Support: supports both numerical and categorical data
- Conditional Generation: satisfies any conditions at generation time
- Public Pretraining: models can be pretrained on public data
- Structural Zeros: can be configured or suppressed
- Max Model Size: the trained model size can be controlled
- Serialization: trained models can be saved and reloaded

Library	Marg	ginal Model		DP Guarantee			
-	PrivBayes [50]	MST [32]	AIM [33]	Data Domain	Data Preprocessing	Floating-Point Precision	
<i>dpmm</i> (ours)	√	\checkmark	\checkmark	✓	\checkmark	\checkmark	
private-pgm [29]	×	\checkmark	\checkmark	\sim^1	×	×	
OpenDP [41]	× (\checkmark	\checkmark	\sim^2	\sim^3	\checkmark	
synthcity [43]	✓	×	\checkmark	×	×	×	

Library	Mixed Data Support	Conditional Generation	Public Data Pretraining	Structural Zeros	Max Model Size	Serialization
dpmm (ours)	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
private-pgm [29]	×	×	×	MST	AIM	×
OpenDP [41]	\checkmark	×	×	MST	AIM	×
synthcity [43]	✓	×	×	×	AIM	\checkmark

Experimental Evaluation

Privacy

Figure 1: Comparison between *dpmm* and other libraries ($\epsilon = 1$, $\delta = 10-5$).

Figure 3: DP auditing of *dpmm* and other libraries.

Main Take-Aways

Figure 2: Utility-privacy tradeoffs of *dpmm*.

- We implement and open source *dpmm*, a lightweight library for end-to-end DP synthetic data generation, containing three popular marginal models (PrivBayes, MST, and AIM) with rich functionality.
- 2. *dpmm* achieves higher utility than previous implementations -- on average 1.5% higher than private-pgm and 147% than OpenDP/synthcity

3. dpmm contains state-of-the-art DP auditing procedures and effectively addresses known DP-related vulnerabilities.

sofiane.mahiou@sas.com

11th Theory and Practice of Differential Privacy Workshop (TPDP 2025)