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that were underrepresented in the real data suffer disproportionate drop in utility. Analyzing/training models on DP synthetic data
—e O — -- . F— could result in:
_ _ e e, ] SRR e - treating different subpopulations unevenly
Experlmental settlngs 5o s S B T » unreliable/unfair conclusions with real societal
DP generative mOde|S: o0 : n::;‘:;’”‘ 100 10 1 0.1 0.01 no-DP 100 01 0.1 0.01 no-DP 100 10 1 0.1 0.01 COStS
1) PrivBayes (Laplace mechanism) o 1 £ Dr s ot son-1o
2) DP-WGAN (DP-SGD) A - T inr = A [ I
3) PATE-GAN (PATE) {3l IR T T SR IR | Y TR M R T 1 e | . g, 454 X
class size (log scale) class size (log scale) class size (log scale)
Data settings: (a) PrivBayes (b) DP-WGAN (c) PATE-GAN Full paper (+ further analysis and experiments):
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